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Research interests
10 years of research

I Approximation and model checking of probabilistic systems

I Uniform generation of executions in large systems

I Adversarial information retrieval on the web (not presented)

I Large-scale problems and probabilistic algorithms (not
presented)

I Grid computing (not presented)

I Architecture driven compressive sensing algorithms (not
presented)
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General context
What’s the problem?

The problem is the state space explosion phenomenon

explicit
model

succinct
representation
of the model

• A state-of-the-art probabilistic model checker can handle systems
whose size is at most ≈ 1011 states (PRISM FAQ)

• Several methods are aimed to push the memory wall: symbolic
MC, abstraction, composition, etc.

My work focuses on 
approximation methods 

insensitive to the state space 
explosion

Space complexity sub-linear (log) or independent of the size of the 
model

Time complexity is not the issue, but the lower is the better
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Probabilistic systems
Definition

Discrete Time Markov Chains (DTMCs)

Sleeping

Hungry

Go in the 
water

Fish and eat

No otter
in the water?

1
1

0,2

0,8
0,5

0,5

0,5

0,5

1

The fishing otter model

I M = (S ,P, s0, L)
I S : states
I P : S × S → [0, 1]

probabilistic transitions
I s0 ∈ S initial state
I L labelling function

I execution or path: sequence of
states according to P

I φ ∈ LTL, Prob(φ) is the
measure of paths satisfying φ in
M
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Probabilistic systems
Can verification be approximated?

Can verification be approximated? [P01]

Randomized Approximation Scheme (RAS)
A randomized algorithm that takes as input the model, the
specification φ, two real numbers ε, δ > 0 and produces a value p̃
such that:

Pr
(
|p̃ − prob(φ)| < ε.prob(φ)

)
≥ 1− δ (multiplicative error)

Fully Polynomial RAS (FPRAS)
Running time is polynomial in |φ|, in the size of the succinct
representation, in 1

ε and in log(1δ )
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Probabilistic systems
Can verification be approximated?

Can verification be approximated? [P01]

Not efficiently! [LP05, LP08]

Theorem [LP08]
If there is a FPRAS for the problem of computing Prob[φ] for
LTL formula φ, then RP = NP

This is unlikely! non approximability of pLTL
Can we however design an algorithm that works for an
expressive fragment of LTL?

YES WE CAN
Relaxation on the fragment but also on the type of error
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Approximate verification algorithms
Additive error

s0

k

Input: D, k, φ, ε, δ
Output: approx. of Probk [φ]

N := ln( 2
δ

)/2ε2

A := 0

For i = 1 to N do

B :=
(
RandomPath(D, k) |= φ

)
A := A + B

EndFor

Return Y = A/N

We consider bounded
properties
i.e. we approximate Probk(φ)

We use a succinct representation
D s.t. |D| = polylog(|M|)

Additive error:
Pr
(
|Y − probk(φ)| < ε

)
≥ 1− δ

Running time is polynomial in
|D| and |φ|

This is a FPRAS for Probk(φ) [LP02, HLMP04]
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Approximate verification algorithms
Additive error cont’d

Extension to more expressive subset [HLMP04, LP05, LP08]

I Monotone formulas (this includes reachability)
I if true on a path at depth k , still true for k ′ > k

I Essentially Positive Fragment (EPF)
I negation in front of atomic propositions only
I EPF formulas are monotone

I Anti monotone formulas through negation (this includes
safety)

How to proceed?

18 / 52



Approximate verification algorithms
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Extension to more expressive subset [HLMP04, LP05, LP08]
How to proceed?

Iterate the previous algorithm until k is large enough

How large?

k is such that O(km2−1|λ2|k) ≤ ε (Perron-Frobenius)
where m2 is the multiplicity of λ2, second eigenvalue of P

This is a RAS for Prob(φ), logspace complexity
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Approximate verification algorithms
Additive error cont’d

previous bound is, in practice, intractable [LP08]
Need of a practical stopping criterion

I Let p = Prob[ψ] = limk→∞Probk [ψ]

I ψ is a monotone formula, so q = 1− p = Prob[¬ψ] can be
approximated by a slight modification of the MC 2 algorithm
(Grosu & Smolka 05)

I Use concurrently the two algorithms

I If |p̂k − (1− q̂l)| ≤ ε/3 then p̂k is an ε-approximation of p
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Approximate verification algorithms
Additive error cont’d

Extension to CTMCs [HLP06]

I CTMC = (S , I ,R, L)
I S set of states, I initial states, R : S × S → R+ rate matrix,

and L labelling function

I Rate of transition from a state s ∈ S : λ(s) =
∑

s′∈S R(s, s ′)

Probability of the transition from s → s ′ within t time units:

Prob(s → s ′) =
R(s, s ′)

λ(s)

(
1− e−t·λ(s)

)

Same algorithm as for DTMCs, only a modification of the
path generation process:

I Choose state j with probability P(i , j) = R(i , j)/λ(i)

I s := j and t := t − ln(random[0,1]/R(i , j)
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Approximate verification algorithms
Multiplicative error

Randomized Approximation Scheme with multiplicative error

I RAS with relative error for DTMC

I Prob. version of the algorithm of Grosu & Smolka 2005

I Not fully polynomial even for bounded properties

I Theoretical foundations coming from Karp, Luby and Madras
1989, and Dagum, Karp, Luby and Sheldon 2000.

If the random variables X1,X2, . . . ,XN are iid according to X ,
S =

∑N
i=1 Xi , and N = 4(e − 2). ln(2δ ).ρ/(ε.µ)2, then:

Pr
(
µ(1− ε) ≤ S/N ≤ µ(1 + ε)

)
≥ 1− δ

where ρ = max(σ2, εµ) is a parameter used to optimize the
number N of experiments and σ2 is the variance of X .
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Approximate verification algorithms
Multiplicative error

Randomized Approximation Scheme with multiplicative error

1. Output an (ε, δ)-approximation µ̂ of µ after expected number
of experiments proportional to 4(e − 2). ln(2δ )/ε2µ

2. Use µ̂ to set the number of experiments to produce ρ̂ that is
within a constant factor of ρ with probability at least (1− δ),

3. Use µ̂ and ρ̂ to set the number of experiments and runs the
experiments to produce an (ε, δ)-approximation of µ.

RAS (with multiplicative error) for computing p = Probk [φ]

Not an FPRAS as the expected number of experiments can be
exponential for small values of µ
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Approximate verification algorithms
Summary

additive
error

multiplicative
error

DTMC

FPRAS

RAS

RAS

RAS

Bounded Monotone LTL

RAS

FPRAS

RP=NP

I Extension to CTMCs

I Practical stopping criterion
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Perspectives: approx. verification for MDPs with rewards
Statement of the problem

n

...
...

...
...

...
...

a0

0

a i

ak

...
...

...

...

...

...
...

...
...

b1

bk

b j

I M = (S ,A,P,R)
I S : states
I A: set of actions
I P(s, a): transition

probabilities from s
under action a

I R(s, a): reward for
executing action a
from state s

Actions are chosen by
adversaries

Choices of an adversary define a
strategy

One want to minimize/maximize
the total reward given by a
strategy

We want to approximate the
probability of a LTL behavior φ
under best (and worst) strategy π

Probπ(φ)
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Perspectives: approx. verification for MDPs with rewards

I Usually, randomized (or simple) adversaries are considered

I Finding a quasi-optimal strategy can be done through
sampling algorithm for all mighty adversaries

I Seems to be hard (or most?) for randomized adversaries

I Seems to apply (i.e. to have a meaning) only for properties on
rewards

I What about infinite MDPs?
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Approximation?
Random walks versus uniform generation

Approximation for non probabilistic systems

Random walks in probabilistic systems use local random
choices, this is legit since these choices are truly in the
system

In testing, model checking or simulation of non probabilistic
systems, isotropic exploration is often used

Local choices from a node are made uniformly according to the out
degree of the node

The topology has an impact on the coverage, this is BAD
Need for an uniform exploration!
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Uniform generation of paths

Uniform generation of paths of fixed length in a graph
[DGGLP06, GDGLOP08]

u

v1

v2

v3

lu(k) = #pathsk(u)

pathsk(u): length k, starting at u

Condition for path uniformity:

Prob(choose vi ) =
lvi (k − 1)

lu(k)

This brute force method works for small models
Computing all these prob. is too expensive for large models!
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Uniform generation of paths

compositional approach

I Large models are constructed through a concurrent
composition of modules

I Use uniform generation of paths in modules to generate
almost uniformly paths in the model

Module 
1

Module 
2

Module 
3x x = Model

⊙ ⊙ =

I Lot of technicalities: how to choose the length of subpaths,
how to shuffle, etc. But it works!

I Other methods and improvements: Oudinet PhD thesis (2010)
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Perspectives
Uniform generation of lassos

Counting and Generating Lassos in Directed Graphs
[ODGLP]

A lasso

Problems:
• Counting elementary cycles is not
easy unless P = NP
• Finding all elementary cycles: no
polynomial time algorithm

I The fundamental problem is still the state space
explosion

I Seems to be feasible for reducible flowgraphs

I Extension to broader class of graphs is not trivial
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APMC

Approximate Probabilistic Model Checker (APMC)

I Implement techniques previously presented today

I First prototype by Herault, Lassaigne, Magniette and
Peyronnet [HLMP04]

I First scalable version by Guirado, Herault, Lassaigne and
Peyronnet [GHLP05]

I Since then, a real team work (around 20 collaborators) for
development and case studies
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APMC
Architecture

Model

Formula

APMC
compiler

APMC
deployment

Distributed ad-hoc 
generation and 
verification code

Computing 
resources

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instancegenerator/verifier

instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

Distributed
computation

Approximation of the probability of the formula 
to be true in the model
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APMC
Distributed architecture, from the past...

I/O Computation

......

P:=generate();

NbTrue:=verify(P);

NbTotal++;
+
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APMC
Distributed architecture, from the past...
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APMC
Distributed architecture, from the past...
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APMC
...to the future: architecture-driven parallel APMC
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- A small slowdown due to the synchronization 
time that rises with the number of cores when 
used on a SMP machine
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- No overhead in the use of BSP++

- OpenMP slightly better than MPI on SMP 
machines (no surprise here)

- The parallelization scales perfectly

- No overhead in the use of BSP++

- Outperforms the MPI version by 50% to 10% 
depending on the models (in fact it depends 
on the ratio computation/communication) 

APMC CELL-ASSISTED
[BHLP08]

- Does not scale so hit the memory 
wall!

- Not compatible with CTMCs

- Does not handle synchronization
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]
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APMC
...to the future: architecture-driven parallel APMC
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APMC
...to the future: architecture-driven parallel APMC

Architecture-driven parallel APMC

The best strategy for building a parallel version of a sampling
based probabilistic model checker is to use an hybrid

architecture with an hybrid version of the code

The overhead due to the use of an automatic parallelization
framework (here BSP++) is close to zero
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APMC
The problem of the input

Can we use a more concise and user-friendly input language?

I Currently APMC uses PRISM input language
I Not scriptable
I Not flexible (What if some modules are a little bit different)

I variable renaming inappropriate
I code duplication — error prone

I APMC is not bound by the memory wall, the language can be
fancy and more expressive

I We want to avoid scripting since it requires extra skills
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APMC
The problem of the input

eXtended Reactive Modules (XRM) [DSP06]

I an extended version of the PRISM language.

I For loops
I If statements
I Functions to factor code
I Built-in functions
I Parametric and recursive formulas

I a compiler generates PRISM language

I Consistency of the generated code is ensured by the compiler
I Type-checking is possible
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APMC
eXtended Reactive Modules (XRM)

Motivation
eXtended Reactive Modules
Conclusion and perspectives

The package
Features
Sensor Networks

Meta-If statements

Conditional definition of a module

/ / Event l o c a t i o n .
const i n t event_x = 5 , event_y = 5;

for x from 0 to width − 1 do
for y from 0 to he igh t − 1 do

module sensor [ x ] [ y ]
i f x = event_x & y = event_y then

/ / Broadcast ing
else

/ / L i s t e n i ng
end

end module
end

end

A. Demaille et al (LRDE) Modeling of Sensor Networks Using XRM Nov. 17th, 2006 28 / 43
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Motivation
eXtended Reactive Modules
Conclusion and perspectives

The package
Features
Sensor Networks

Formulas
Extentions

Parametric Formulas

formula consume ( i n t value ) =
ba t te ry ’ = b a t t e r y < value ? 0 : b a t t e r y − value ;

Recursive Formulas

formula f a c t ( i n t n ) = n <= 1 ? 1 : n ∗ f a c t ( n − 1 ) ;

A. Demaille et al (LRDE) Modeling of Sensor Networks Using XRM Nov. 17th, 2006 34 / 43
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APMC
eXtended Reactive Modules (XRM)

Results on a case study [DSP06 versus DHP06]

Test on a simple model: basic sensor network

DHP06 DSP06

Shell
M4/m4sugar

XRM
XPCTL

264 lines of M4
247 lines of Shell 

script
87 lines of XRM

12 lines of XPCTL

1346 lines of PRISM 
language

25 lines of PCTL

941 lines of PRISM 
language

25 lines of PCTL

Tools

Size of the
description

Size of the 
generated 

PRISM model

49 / 52



APMC
Perspectives: how to feed the beast

Can we do something even more user-friendly?

I APMC works on top of a simulator
I If we can control totally a real system, we don’t need any input

language

I VD-S is a virtualization platform that allows for the total
control of any application running on top of it [HLPQCJ09]

I It can be used as a path generator for the APMC engine

I Adversaries can be defined externally to interact with the
system under verification
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APMC
Perspectives: even more exotic architectures

New architectures?

I GPU (unlikely to be efficient)

I FPGA (as accelerator)

I CELL (as accelerator)

I etc.
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Conclusion

I Complexity, lower bounds and efficient algorithms for
approximate verification

I Efficient implementation showing good performances on huge
systems

I Several technical improvements, including the consideration of
the machines architecture

A lot of exciting perspectives, with many collaborators!

52 / 52


	General context
	Probabilistic systems
	Can verification be approximated?
	Approximate verification algorithms
	Perspectives

	Non probabilistic systems
	Approximate Probabilistic Model Checker (APMC)
	Architecture
	Distributed and parallel APMC
	APMC input language
	Perspectives

	Conclusion

