
Approximation and verification

Sylvain Peyronnet

December 7th, 2010

1 / 52



Research interests
10 years of research

I Approximation and model checking of probabilistic systems

I Uniform generation of executions in large systems

I Adversarial information retrieval on the web (not presented)

I Large-scale problems and probabilistic algorithms (not
presented)

I Grid computing (not presented)

I Architecture driven compressive sensing algorithms (not
presented)

2 / 52



Research interests
10 years of research

I Approximation and model checking of probabilistic systems

I Uniform generation of executions in large systems

I Adversarial information retrieval on the web (not presented)

I Large-scale problems and probabilistic algorithms (not
presented)

I Grid computing (not presented)

I Architecture driven compressive sensing algorithms (not
presented)

2 / 52



General context

Probabilistic systems
Can verification be approximated?
Approximate verification algorithms

Additive (absolute) error
Multiplicative (relative) error

Perspectives

Non probabilistic systems

Approximate Probabilistic Model Checker (APMC)
Architecture
Distributed and parallel APMC
APMC input language
Perspectives

Conclusion

3 / 52



General context
The big picture

system

system
requirement

Does the system 
satisfy the 

requirement?

4 / 52



General context
The big picture

system explicit
model

succinct
representation
of the model

system
requirement specification

Does the system 
satisfy the 

requirement?

5 / 52



General context
The big picture

verification
algorithm

system explicit
model

succinct
representation
of the model

system
requirement specification

Does the system 
satisfy the 

requirement?

6 / 52



General context
The big picture

verification
algorithm

system explicit
model

succinct
representation
of the model

system
requirement specification

Does the system 
satisfy the 

requirement?

+ counterexample

or

prob(     )

7 / 52



General context
The big picture

Labelled
Transition
Systems

Classi
cal

Discrete Time 
Markov ChainsProbabilis
tic

Continuous 
Time Markov 

Chains

Markov
Decision 

Processes
Non det.

Continuous 
Time MDPs

8 / 52



General context
The big picture

Labelled
Transition
Systems

Classi
cal

Discrete Time 
Markov ChainsProbabilis
tic

Continuous 
Time Markov 

Chains

Markov
Decision 

Processes
Non det.

Continuous 
Time MDPs

LTL

CTL

pLTL

PCTL

CSL CSL

pLTL

PCTL

9 / 52



General context
The big picture

Labelled
Transition
Systems

Classi
cal

Discrete Time 
Markov ChainsProbabilis
tic

Continuous 
Time Markov 

Chains

Markov
Decision 

Processes
Non det.

Continuous 
Time MDPs

LTL

CTL

pLTL

PCTL

CSL CSL

pLTL

PCTL

O(poly(|M|).2|φ|)

O(poly(|M|).|φ|)

O(poly(|M|).|φ|)

O(|M|.2|φ|)

O(|M|.|φ|)

O(poly(|M|).|φ|)

O(poly(|M|).|φ|)

O(poly(|M|).22|φ|
)

10 / 52



General context
The big picture

Labelled
Transition
Systems

Classi
cal

Discrete Time 
Markov ChainsProbabilis
tic

Continuous 
Time Markov 

Chains

Markov
Decision 

Processes
Non det.

Continuous 
Time MDPs

LTL

CTL

pLTL

PCTL

CSL CSL

pLTL

PCTL

O(poly(|M|).2|φ|)

O(poly(|M|).|φ|)

O(poly(|M|).|φ|)

O(|M|.2|φ|)

O(|M|.|φ|)

O(poly(|M|).|φ|)

O(poly(|M|).|φ|)

O(poly(|M|).22|φ|
)

LOOKS LIKE THERE IS
NO PROBLEM

11 / 52



General context
What’s the problem?

The problem is the state space explosion phenomenon

explicit
model

succinct
representation
of the model

• A state-of-the-art probabilistic model checker can handle systems
whose size is at most ≈ 1011 states (PRISM FAQ)

• Several methods are aimed to push the memory wall: symbolic
MC, abstraction, composition, etc.

My work focuses on 
approximation methods 

insensitive to the state space 
explosion

Space complexity sub-linear (log) or independent of the size of the 
model

Time complexity is not the issue, but the lower is the better

12 / 52



General context
What’s the problem?

The problem is the state space explosion phenomenon

explicit
model

succinct
representation
of the model

• A state-of-the-art probabilistic model checker can handle systems
whose size is at most ≈ 1011 states (PRISM FAQ)

• Several methods are aimed to push the memory wall: symbolic
MC, abstraction, composition, etc.

My work focuses on 
approximation methods 

insensitive to the state space 
explosion

Space complexity sub-linear (log) or independent of the size of the 
model

Time complexity is not the issue, but the lower is the better

12 / 52



General context
What’s the problem?

The problem is the state space explosion phenomenon

explicit
model

succinct
representation
of the model

• A state-of-the-art probabilistic model checker can handle systems
whose size is at most ≈ 1011 states (PRISM FAQ)

• Several methods are aimed to push the memory wall: symbolic
MC, abstraction, composition, etc.

My work focuses on 
approximation methods 

insensitive to the state space 
explosion

Space complexity sub-linear (log) or independent of the size of the 
model

Time complexity is not the issue, but the lower is the better

12 / 52



General context

Probabilistic systems
Can verification be approximated?
Approximate verification algorithms

Additive (absolute) error
Multiplicative (relative) error

Perspectives

Non probabilistic systems

Approximate Probabilistic Model Checker (APMC)
Architecture
Distributed and parallel APMC
APMC input language
Perspectives

Conclusion

13 / 52



Probabilistic systems
Definition

Discrete Time Markov Chains (DTMCs)

Sleeping

Hungry

Go in the 
water

Fish and eat

No otter
in the water?

1
1

0,2

0,8
0,5

0,5

0,5

0,5

1

The fishing otter model

I M = (S ,P, s0, L)
I S : states
I P : S × S → [0, 1]

probabilistic transitions
I s0 ∈ S initial state
I L labelling function

I execution or path: sequence of
states according to P

I φ ∈ LTL, Prob(φ) is the
measure of paths satisfying φ in
M

14 / 52



Probabilistic systems
Can verification be approximated?

Can verification be approximated? [P01]

Randomized Approximation Scheme (RAS)
A randomized algorithm that takes as input the model, the
specification φ, two real numbers ε, δ > 0 and produces a value p̃
such that:

Pr
(
|p̃ − prob(φ)| < ε.prob(φ)

)
≥ 1− δ (multiplicative error)

Fully Polynomial RAS (FPRAS)
Running time is polynomial in |φ|, in the size of the succinct
representation, in 1

ε and in log(1δ )

15 / 52



Probabilistic systems
Can verification be approximated?

Can verification be approximated? [P01]

Randomized Approximation Scheme (RAS)
A randomized algorithm that takes as input the model, the
specification φ, two real numbers ε, δ > 0 and produces a value p̃
such that:

Pr
(
|p̃ − prob(φ)| < ε.prob(φ)

)
≥ 1− δ (multiplicative error)

Fully Polynomial RAS (FPRAS)
Running time is polynomial in |φ|, in the size of the succinct
representation, in 1

ε and in log(1δ )

15 / 52



Probabilistic systems
Can verification be approximated?

Can verification be approximated? [P01]

Not efficiently! [LP05, LP08]

Theorem [LP08]
If there is a FPRAS for the problem of computing Prob[φ] for
LTL formula φ, then RP = NP

This is unlikely! non approximability of pLTL
Can we however design an algorithm that works for an
expressive fragment of LTL?

YES WE CAN
Relaxation on the fragment but also on the type of error

16 / 52



Probabilistic systems
Can verification be approximated?

Can verification be approximated? [P01]

Not efficiently! [LP05, LP08]

Theorem [LP08]
If there is a FPRAS for the problem of computing Prob[φ] for
LTL formula φ, then RP = NP

This is unlikely! non approximability of pLTL

Can we however design an algorithm that works for an
expressive fragment of LTL?

YES WE CAN
Relaxation on the fragment but also on the type of error

16 / 52



Probabilistic systems
Can verification be approximated?

Can verification be approximated? [P01]

Not efficiently! [LP05, LP08]

Theorem [LP08]
If there is a FPRAS for the problem of computing Prob[φ] for
LTL formula φ, then RP = NP

This is unlikely! non approximability of pLTL
Can we however design an algorithm that works for an
expressive fragment of LTL?

YES WE CAN
Relaxation on the fragment but also on the type of error

16 / 52



Probabilistic systems
Can verification be approximated?

Can verification be approximated? [P01]

Not efficiently! [LP05, LP08]

Theorem [LP08]
If there is a FPRAS for the problem of computing Prob[φ] for
LTL formula φ, then RP = NP

This is unlikely! non approximability of pLTL
Can we however design an algorithm that works for an
expressive fragment of LTL?

YES WE CAN
Relaxation on the fragment but also on the type of error

16 / 52



Approximate verification algorithms
Additive error

s0

k

Input: D, k, φ, ε, δ
Output: approx. of Probk [φ]

N := ln( 2
δ

)/2ε2

A := 0

For i = 1 to N do

B :=
(
RandomPath(D, k) |= φ

)
A := A + B

EndFor

Return Y = A/N

We consider bounded
properties
i.e. we approximate Probk(φ)

We use a succinct representation
D s.t. |D| = polylog(|M|)

Additive error:
Pr
(
|Y − probk(φ)| < ε

)
≥ 1− δ

Running time is polynomial in
|D| and |φ|

This is a FPRAS for Probk(φ) [LP02, HLMP04]

17 / 52



Approximate verification algorithms
Additive error

s0

k

Input: D, k, φ, ε, δ
Output: approx. of Probk [φ]

N := ln( 2
δ

)/2ε2

A := 0

For i = 1 to N do

B :=
(
RandomPath(D, k) |= φ

)
A := A + B

EndFor

Return Y = A/N

We consider bounded
properties
i.e. we approximate Probk(φ)

We use a succinct representation
D s.t. |D| = polylog(|M|)

Additive error:
Pr
(
|Y − probk(φ)| < ε

)
≥ 1− δ

Running time is polynomial in
|D| and |φ|

This is a FPRAS for Probk(φ) [LP02, HLMP04]

17 / 52



Approximate verification algorithms
Additive error cont’d

Extension to more expressive subset [HLMP04, LP05, LP08]

I Monotone formulas (this includes reachability)
I if true on a path at depth k , still true for k ′ > k

I Essentially Positive Fragment (EPF)
I negation in front of atomic propositions only
I EPF formulas are monotone

I Anti monotone formulas through negation (this includes
safety)

How to proceed?

18 / 52



Approximate verification algorithms
Additive error cont’d

Extension to more expressive subset [HLMP04, LP05, LP08]
How to proceed?

Iterate the previous algorithm until k is large enough

How large?

k is such that O(km2−1|λ2|k) ≤ ε (Perron-Frobenius)
where m2 is the multiplicity of λ2, second eigenvalue of P

This is a RAS for Prob(φ), logspace complexity

19 / 52



Approximate verification algorithms
Additive error cont’d

Extension to more expressive subset [HLMP04, LP05, LP08]
How to proceed?

Iterate the previous algorithm until k is large enough
How large?

k is such that O(km2−1|λ2|k) ≤ ε (Perron-Frobenius)
where m2 is the multiplicity of λ2, second eigenvalue of P

This is a RAS for Prob(φ), logspace complexity

19 / 52



Approximate verification algorithms
Additive error cont’d

Extension to more expressive subset [HLMP04, LP05, LP08]
How to proceed?

Iterate the previous algorithm until k is large enough
How large?

k is such that O(km2−1|λ2|k) ≤ ε (Perron-Frobenius)
where m2 is the multiplicity of λ2, second eigenvalue of P

This is a RAS for Prob(φ), logspace complexity

19 / 52



Approximate verification algorithms
Additive error cont’d

previous bound is, in practice, intractable [LP08]
Need of a practical stopping criterion

I Let p = Prob[ψ] = limk→∞Probk [ψ]

I ψ is a monotone formula, so q = 1− p = Prob[¬ψ] can be
approximated by a slight modification of the MC 2 algorithm
(Grosu & Smolka 05)

I Use concurrently the two algorithms

I If |p̂k − (1− q̂l)| ≤ ε/3 then p̂k is an ε-approximation of p

20 / 52



Approximate verification algorithms
Additive error cont’d

previous bound is, in practice, intractable [LP08]
Need of a practical stopping criterion

I Let p = Prob[ψ] = limk→∞Probk [ψ]

I ψ is a monotone formula, so q = 1− p = Prob[¬ψ] can be
approximated by a slight modification of the MC 2 algorithm
(Grosu & Smolka 05)

I Use concurrently the two algorithms

I If |p̂k − (1− q̂l)| ≤ ε/3 then p̂k is an ε-approximation of p

20 / 52



Approximate verification algorithms
Additive error cont’d

Extension to CTMCs [HLP06]

I CTMC = (S , I ,R, L)
I S set of states, I initial states, R : S × S → R+ rate matrix,

and L labelling function

I Rate of transition from a state s ∈ S : λ(s) =
∑

s′∈S R(s, s ′)

Probability of the transition from s → s ′ within t time units:

Prob(s → s ′) =
R(s, s ′)

λ(s)

(
1− e−t·λ(s)

)

Same algorithm as for DTMCs, only a modification of the
path generation process:

I Choose state j with probability P(i , j) = R(i , j)/λ(i)

I s := j and t := t − ln(random[0,1]/R(i , j)

21 / 52



Approximate verification algorithms
Additive error cont’d

Extension to CTMCs [HLP06]

I CTMC = (S , I ,R, L)
I S set of states, I initial states, R : S × S → R+ rate matrix,

and L labelling function

I Rate of transition from a state s ∈ S : λ(s) =
∑

s′∈S R(s, s ′)

Probability of the transition from s → s ′ within t time units:

Prob(s → s ′) =
R(s, s ′)

λ(s)

(
1− e−t·λ(s)

)
Same algorithm as for DTMCs, only a modification of the
path generation process:

I Choose state j with probability P(i , j) = R(i , j)/λ(i)

I s := j and t := t − ln(random[0,1]/R(i , j)

21 / 52



Approximate verification algorithms
Multiplicative error

Randomized Approximation Scheme with multiplicative error

I RAS with relative error for DTMC

I Prob. version of the algorithm of Grosu & Smolka 2005

I Not fully polynomial even for bounded properties

I Theoretical foundations coming from Karp, Luby and Madras
1989, and Dagum, Karp, Luby and Sheldon 2000.

If the random variables X1,X2, . . . ,XN are iid according to X ,
S =

∑N
i=1 Xi , and N = 4(e − 2). ln(2δ ).ρ/(ε.µ)2, then:

Pr
(
µ(1− ε) ≤ S/N ≤ µ(1 + ε)

)
≥ 1− δ

where ρ = max(σ2, εµ) is a parameter used to optimize the
number N of experiments and σ2 is the variance of X .

22 / 52



Approximate verification algorithms
Multiplicative error

Randomized Approximation Scheme with multiplicative error

1. Output an (ε, δ)-approximation µ̂ of µ after expected number
of experiments proportional to 4(e − 2). ln(2δ )/ε2µ

2. Use µ̂ to set the number of experiments to produce ρ̂ that is
within a constant factor of ρ with probability at least (1− δ),

3. Use µ̂ and ρ̂ to set the number of experiments and runs the
experiments to produce an (ε, δ)-approximation of µ.

RAS (with multiplicative error) for computing p = Probk [φ]

Not an FPRAS as the expected number of experiments can be
exponential for small values of µ

23 / 52



Approximate verification algorithms
Summary

additive
error

multiplicative
error

DTMC

FPRAS

RAS

RAS

RAS

Bounded Monotone LTL

RAS

FPRAS

RP=NP

I Extension to CTMCs

I Practical stopping criterion

24 / 52



Perspectives: approx. verification for MDPs with rewards
Statement of the problem

n

...
...

...
...

...
...

a0

0

a i

ak

...
...

...

...

...

...
...

...
...

b1

bk

b j

I M = (S ,A,P,R)
I S : states
I A: set of actions
I P(s, a): transition

probabilities from s
under action a

I R(s, a): reward for
executing action a
from state s

Actions are chosen by
adversaries

Choices of an adversary define a
strategy

One want to minimize/maximize
the total reward given by a
strategy

We want to approximate the
probability of a LTL behavior φ
under best (and worst) strategy π

Probπ(φ)

25 / 52



Perspectives: approx. verification for MDPs with rewards
Statement of the problem

n

...
...

...
...

...
...

a0

0

a i

ak

...
...

...

...

...

...
...

...
...

b1

bk

b j

I M = (S ,A,P,R)
I S : states
I A: set of actions
I P(s, a): transition

probabilities from s
under action a

I R(s, a): reward for
executing action a
from state s

Actions are chosen by
adversaries

Choices of an adversary define a
strategy

One want to minimize/maximize
the total reward given by a
strategy

We want to approximate the
probability of a LTL behavior φ
under best (and worst) strategy π

Probπ(φ)

25 / 52



Perspectives: approx. verification for MDPs with rewards

I Usually, randomized (or simple) adversaries are considered

I Finding a quasi-optimal strategy can be done through
sampling algorithm for all mighty adversaries

I Seems to be hard (or most?) for randomized adversaries

I Seems to apply (i.e. to have a meaning) only for properties on
rewards

I What about infinite MDPs?

26 / 52



General context

Probabilistic systems
Can verification be approximated?
Approximate verification algorithms

Additive (absolute) error
Multiplicative (relative) error

Perspectives

Non probabilistic systems

Approximate Probabilistic Model Checker (APMC)
Architecture
Distributed and parallel APMC
APMC input language
Perspectives

Conclusion

27 / 52



Approximation?
Random walks versus uniform generation

Approximation for non probabilistic systems

Random walks in probabilistic systems use local random
choices, this is legit since these choices are truly in the
system

In testing, model checking or simulation of non probabilistic
systems, isotropic exploration is often used

Local choices from a node are made uniformly according to the out
degree of the node

The topology has an impact on the coverage, this is BAD
Need for an uniform exploration!

28 / 52



Approximation?
Random walks versus uniform generation

Approximation for non probabilistic systems

Random walks in probabilistic systems use local random
choices, this is legit since these choices are truly in the
system
In testing, model checking or simulation of non probabilistic
systems, isotropic exploration is often used

Local choices from a node are made uniformly according to the out
degree of the node

The topology has an impact on the coverage, this is BAD
Need for an uniform exploration!

28 / 52



Approximation?
Random walks versus uniform generation

Approximation for non probabilistic systems

Random walks in probabilistic systems use local random
choices, this is legit since these choices are truly in the
system
In testing, model checking or simulation of non probabilistic
systems, isotropic exploration is often used

Local choices from a node are made uniformly according to the out
degree of the node

The topology has an impact on the coverage, this is BAD
Need for an uniform exploration!

28 / 52



Uniform generation of paths

Uniform generation of paths of fixed length in a graph
[DGGLP06, GDGLOP08]

u

v1

v2

v3

lu(k) = #pathsk(u)

pathsk(u): length k, starting at u

Condition for path uniformity:

Prob(choose vi ) =
lvi (k − 1)

lu(k)

This brute force method works for small models
Computing all these prob. is too expensive for large models!

29 / 52



Uniform generation of paths

Uniform generation of paths of fixed length in a graph
[DGGLP06, GDGLOP08]

u

v1

v2

v3

lu(k) = #pathsk(u)

pathsk(u): length k, starting at u

Condition for path uniformity:

Prob(choose vi ) =
lvi (k − 1)

lu(k)

This brute force method works for small models
Computing all these prob. is too expensive for large models!

29 / 52



Uniform generation of paths

compositional approach

I Large models are constructed through a concurrent
composition of modules

I Use uniform generation of paths in modules to generate
almost uniformly paths in the model

Module 
1

Module 
2

Module 
3x x = Model

⊙ ⊙ =

I Lot of technicalities: how to choose the length of subpaths,
how to shuffle, etc. But it works!

I Other methods and improvements: Oudinet PhD thesis (2010)

30 / 52



Perspectives
Uniform generation of lassos

Counting and Generating Lassos in Directed Graphs
[ODGLP]

A lasso

Problems:
• Counting elementary cycles is not
easy unless P = NP
• Finding all elementary cycles: no
polynomial time algorithm

I The fundamental problem is still the state space
explosion

I Seems to be feasible for reducible flowgraphs

I Extension to broader class of graphs is not trivial

31 / 52



General context

Probabilistic systems
Can verification be approximated?
Approximate verification algorithms

Additive (absolute) error
Multiplicative (relative) error

Perspectives

Non probabilistic systems

Approximate Probabilistic Model Checker (APMC)
Architecture
Distributed and parallel APMC
APMC input language
Perspectives

Conclusion

32 / 52



APMC

Approximate Probabilistic Model Checker (APMC)

I Implement techniques previously presented today

I First prototype by Herault, Lassaigne, Magniette and
Peyronnet [HLMP04]

I First scalable version by Guirado, Herault, Lassaigne and
Peyronnet [GHLP05]

I Since then, a real team work (around 20 collaborators) for
development and case studies

33 / 52



APMC
Architecture

Model

Formula

APMC
compiler

APMC
deployment

Distributed ad-hoc 
generation and 
verification code

Computing 
resources

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instancegenerator/verifier

instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

generator/verifier
instance

Distributed
computation

Approximation of the probability of the formula 
to be true in the model

34 / 52



APMC
Distributed architecture, from the past...

I/O Computation

......

P:=generate();

NbTrue:=verify(P);

NbTotal++;
+

35 / 52



APMC
Distributed architecture, from the past...

(1
3
3
0
0
,3

s)

(6
6
6
2
,7

s)

(3
3
6
7
,2

s)

(1
6
9
1
,7

s)

(8
6
4
,2

s)

(4
7
5
,1

s)

(2
5
7
,9

s)

(1
6
8
,6

s)

(1
2
8
,8

s)

1 2 4 8 16 32 64 128 256
Number (x) of machines

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

R
el

at
iv

e 
S

lo
w

d
o
w

n

13
30

0,
3s

66
62

,7
s

33
67

,2
s

16
91

,7
s

86
4,

2s

47
5,

1s

25
7,

9s

16
8,

6s

12
8,

8s

1 2 4 8 16 32 64 128 256
Number of machines

1
0

e2
1

0
e3

1
0

e4
T

im
e 

(s
)

46
0s

12
3s

10
6s

93
,7

s

92
,6

s

90
,1

s
91

,5
s

89
,7

s

88
,5

s

87
,8

s

83
,5

s

1 2 3 4 5 6 7 8 9 10 20
Arity of the tree

0

100

200

300

400

500

T
im

e 
(s

)

Old experiments on an old platform
[GHLP05]

Don't look at the numbers, look only at
the behavior!

Model is the 160 dining philosophers

36 / 52



APMC
Distributed architecture, from the past...

(1
3
3
0
0
,3

s)

(6
6
6
2
,7

s)

(3
3
6
7
,2

s)

(1
6
9
1
,7

s)

(8
6
4
,2

s)

(4
7
5
,1

s)

(2
5
7
,9

s)

(1
6
8
,6

s)

(1
2
8
,8

s)

1 2 4 8 16 32 64 128 256
Number (x) of machines

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

R
el

at
iv

e 
S

lo
w

d
o
w

n

13
30

0,
3s

66
62

,7
s

33
67

,2
s

16
91

,7
s

86
4,

2s

47
5,

1s

25
7,

9s

16
8,

6s

12
8,

8s

1 2 4 8 16 32 64 128 256
Number of machines

1
0

e2
1

0
e3

1
0

e4
T

im
e 

(s
)

46
0s

12
3s

10
6s

93
,7

s

92
,6

s

90
,1

s
91

,5
s

89
,7

s

88
,5

s

87
,8

s

83
,5

s

1 2 3 4 5 6 7 8 9 10 20
Arity of the tree

0

100

200

300

400

500

T
im

e 
(s

)

Old experiments on an old platform
[GHLP05]

Don't look at the numbers, look only at
the behavior!

Model is the 160 dining philosophers

good
scalability

poor
scalability

medium
scalability

37 / 52



APMC
Distributed architecture, from the past...

(1
3
3
0
0
,3

s)

(6
6
6
2
,7

s)

(3
3
6
7
,2

s)

(1
6
9
1
,7

s)

(8
6
4
,2

s)

(4
7
5
,1

s)

(2
5
7
,9

s)

(1
6
8
,6

s)

(1
2
8
,8

s)

1 2 4 8 16 32 64 128 256
Number (x) of machines

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

R
el

at
iv

e 
S

lo
w

d
o
w

n

13
30

0,
3s

66
62

,7
s

33
67

,2
s

16
91

,7
s

86
4,

2s

47
5,

1s

25
7,

9s

16
8,

6s

12
8,

8s

1 2 4 8 16 32 64 128 256
Number of machines

1
0

e2
1

0
e3

1
0

e4
T

im
e 

(s
)

46
0s

12
3s

10
6s

93
,7

s

92
,6

s

90
,1

s
91

,5
s

89
,7

s

88
,5

s

87
,8

s

83
,5

s

1 2 3 4 5 6 7 8 9 10 20
Arity of the tree

0

100

200

300

400

500

T
im

e 
(s

)

Old experiments on an old platform
[GHLP05]

Don't look at the numbers, look only at
the behavior!

Model is the 160 dining philosophers
60% of the time 

spent in 
communication

good
scalability

poor
scalability

medium
scalability

38 / 52



APMC
Distributed architecture, from the past...

(1
3
3
0
0
,3

s)

(6
6
6
2
,7

s)

(3
3
6
7
,2

s)

(1
6
9
1
,7

s)

(8
6
4
,2

s)

(4
7
5
,1

s)

(2
5
7
,9

s)

(1
6
8
,6

s)

(1
2
8
,8

s)

1 2 4 8 16 32 64 128 256
Number (x) of machines

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

R
el

at
iv

e 
S

lo
w

d
o
w

n

13
30

0,
3s

66
62

,7
s

33
67

,2
s

16
91

,7
s

86
4,

2s

47
5,

1s

25
7,

9s

16
8,

6s

12
8,

8s

1 2 4 8 16 32 64 128 256
Number of machines

1
0

e2
1

0
e3

1
0

e4
T

im
e 

(s
)

46
0s

12
3s

10
6s

93
,7

s

92
,6

s

90
,1

s
91

,5
s

89
,7

s

88
,5

s

87
,8

s

83
,5

s

1 2 3 4 5 6 7 8 9 10 20
Arity of the tree

0

100

200

300

400

500

T
im

e 
(s

)

Old experiments on an old platform
[GHLP05]

Don't look at the numbers, look only at
the behavior!

Model is the 160 dining philosophers
60% of the time 

spent in 
communication

good
scalability

poor
scalability

average
scalability

No need for a large arity

No contention node

39 / 52



APMC
...to the future: architecture-driven parallel APMC

EIB
PPE

L1

L2

Local

SPE

Local

SPE

Local

SPE

Local

SPE

SPE SPE SPE SPE

Local LocalLocalLocal

CELL

Vector computing cores (SPEs), only 256 KB
The PPE controls the SPEs
PS3 Cell theoretical peak performance: 
     150 GFLOPS (150% of a 3GHz Intel quad-core)

Cluster SMP / multi-core

Hybrid

Cluster of SMP / multi-core machines

Machines connected through a network

Typical example: clusters of GRID5000 

Communication using messages

FSB

Core 1 Core 2

L1

Core 3 Core 4

L1

Shared L2

L1 L1

Shared L2

���
���

�����	
�����	

�����

�����


�	��

�	��


�����
�����

������
������

�	��

�	��


�	��

�	��


�	��

�	��


��������
��������

I7 core 2

Processors or cores of the same machine

Typical example: most commercial processor

Typical example: clusters of GRID5000 

Communication using messages between 
machines

Communication using shared memory between 
cores

Communication using shared memory

40 / 52



APMC
...to the future: architecture-driven parallel APMC

EIB
PPE

L1

L2

Local

SPE

Local

SPE

Local

SPE

Local

SPE

SPE SPE SPE SPE

Local LocalLocalLocal

CELL

Vector computing cores (SPEs), only 256 KB
The PPE controls the SPEs
PS3 Cell theoretical peak performance: 
     150 GFLOPS (150% of a 3GHz Intel quad-core)

Cluster SMP / multi-core

Hybrid

Cluster of SMP / multi-core machines

Machines connected through a network

Typical example: clusters of GRID5000 

Communication using messages

FSB

Core 1 Core 2

L1

Core 3 Core 4

L1

Shared L2

L1 L1

Shared L2

���
���

�����	
�����	

�����

�����


�	��

�	��


�����
�����

������
������

�	��

�	��


�	��

�	��


�	��

�	��


��������
��������

I7 core 2

Processors or cores of the same machine

Typical example: most commercial processor

Typical example: clusters of GRID5000 

Communication using messages between 
machines

Communication using shared memory between 
cores

Communication using shared memory

MPI
OpenMP

MPI+OpenMP

41 / 52



APMC
...to the future: architecture-driven parallel APMC

EIB
PPE

L1

L2

Local

SPE

Local

SPE

Local

SPE

Local

SPE

SPE SPE SPE SPE

Local LocalLocalLocal

CELL

Vector computing cores (SPEs), only 256 KB
The PPE controls the SPEs
PS3 Cell theoretical peak performance: 
     150 GFLOPS (150% of a 3GHz Intel quad-core)

MPI OpenMP

Hybrid

Cluster of SMP / multi-core machines

Machines connected through a network

Typical example: clusters of GRID5000 

Communication using messages

FSB

Core 1 Core 2

L1

Core 3 Core 4

L1

Shared L2

L1 L1

Shared L2

���
���

�����	
�����	

�����

�����


�	��

�	��


�����
�����

������
������

�	��

�	��


�	��

�	��


�	��

�	��


��������
��������

I7 core 2

Processors or cores of the same machine

Typical example: most commercial processor

Typical example: clusters of GRID5000 

Communication using messages between 
machines

Communication using shared memory between 
cores

Communication using shared memory

MPI
OpenMP

MPI+OpenMP

- The parallelization scales perfectly

- No overhead in the use of BSP++

- A small slowdown due to the synchronization 
time that rises with the number of cores when 
used on a SMP machine

- The parallelization scales perfectly

- No overhead in the use of BSP++

- OpenMP slightly better than MPI on SMP 
machines (no surprise here)

- The parallelization scales perfectly

- No overhead in the use of BSP++

- Outperforms the MPI version by 50% to 10% 
depending on the models (in fact it depends 
on the ratio computation/communication) 

APMC CELL-ASSISTED
[BHLP08]

- Does not scale so hit the memory 
wall!

- Not compatible with CTMCs

- Does not handle synchronization

Clus
ter

, S
MP an

d H
ybr

id 

ob
tain

ed
 us

ing
 BSP++

[HBEFP10
]

42 / 52



APMC
...to the future: architecture-driven parallel APMC

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1  2  4  8  16

T
im

e
 p

e
r 

P
a

th
 (

s
e

c
)

Number of cores

Phil50
Phil100
Phil150
Phil200
Phil250
Phil300
Phil350
Phil400
Phil450
Phil500
Phil550
Phil600
Phil650
Phil700
Phil750
Phil800

Dining phil.
SMP machine
MPI version

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1  2  4  8  16

T
im

e
 p

e
r 

P
a

th
 (

s
e

c
)

Number of cores

Phil50
Phil100
Phil150
Phil200
Phil250
Phil300
Phil350
Phil400
Phil450
Phil500
Phil550
Phil600
Phil650
Phil700
Phil750
Phil800

Dining phil.
SMP machine

OpenMP version

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 8 16  32  64  128  256

T
im

e
 p

e
r 

P
a

th
 (

s
e

c
)

Number of cores

Phil50
Phil100
Phil150
Phil200
Phil250
Phil300
Phil350
Phil400
Phil450
Phil500
Phil550
Phil600
Phil650
Phil700
Phil750
Phil800

Dining phil.
Grid5000

Hybrid version

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 64  128  256

T
im

e
 p

e
r 

P
a

th
 (

s
e

c
)

Number of cores

Phil50
Phil100
Phil150
Phil200
Phil250
Phil300
Phil350
Phil400
Phil450
Phil500
Phil550
Phil600
Phil650
Phil700
Phil750
Phil800

Dining phil.
Grid5000

MPI version

43 / 52



APMC
...to the future: architecture-driven parallel APMC

Architecture-driven parallel APMC

The best strategy for building a parallel version of a sampling
based probabilistic model checker is to use an hybrid

architecture with an hybrid version of the code

The overhead due to the use of an automatic parallelization
framework (here BSP++) is close to zero

44 / 52



APMC
The problem of the input

Can we use a more concise and user-friendly input language?

I Currently APMC uses PRISM input language
I Not scriptable
I Not flexible (What if some modules are a little bit different)

I variable renaming inappropriate
I code duplication — error prone

I APMC is not bound by the memory wall, the language can be
fancy and more expressive

I We want to avoid scripting since it requires extra skills

45 / 52



APMC
The problem of the input

eXtended Reactive Modules (XRM) [DSP06]

I an extended version of the PRISM language.

I For loops
I If statements
I Functions to factor code
I Built-in functions
I Parametric and recursive formulas

I a compiler generates PRISM language

I Consistency of the generated code is ensured by the compiler
I Type-checking is possible

46 / 52



APMC
The problem of the input

eXtended Reactive Modules (XRM) [DSP06]

I an extended version of the PRISM language featuring:
I For loops
I If statements
I Functions to factor code
I Built-in functions
I Parametric and recursive formulas

I a compiler generates PRISM language

I Consistency of the generated code is ensured by the compiler
I Type-checking is possible

46 / 52



APMC
The problem of the input

eXtended Reactive Modules (XRM) [DSP06]

I an extended version of the PRISM language featuring:
I For loops
I If statements
I Functions to factor code
I Built-in functions
I Parametric and recursive formulas

I a compiler generates PRISM language
I Consistency of the generated code is ensured by the compiler
I Type-checking is possible

46 / 52



APMC
eXtended Reactive Modules (XRM)

Motivation
eXtended Reactive Modules
Conclusion and perspectives

The package
Features
Sensor Networks

Meta-If statements

Conditional definition of a module

/ / Event l o c a t i o n .
const i n t event_x = 5 , event_y = 5;

for x from 0 to width − 1 do
for y from 0 to he igh t − 1 do

module sensor [ x ] [ y ]
i f x = event_x & y = event_y then

/ / Broadcast ing
else

/ / L i s t e n i ng
end

end module
end

end

A. Demaille et al (LRDE) Modeling of Sensor Networks Using XRM Nov. 17th, 2006 28 / 43

47 / 52



APMC
eXtended Reactive Modules (XRM)

Motivation
eXtended Reactive Modules
Conclusion and perspectives

The package
Features
Sensor Networks

Meta-If statements

Conditional definition of a module

/ / Event l o c a t i o n .
const i n t event_x = 5 , event_y = 5;

for x from 0 to width − 1 do
for y from 0 to he igh t − 1 do

module sensor [ x ] [ y ]
i f x = event_x & y = event_y then

/ / Broadcast ing
else

/ / L i s t e n i ng
end

end module
end

end

A. Demaille et al (LRDE) Modeling of Sensor Networks Using XRM Nov. 17th, 2006 28 / 43

Motivation
eXtended Reactive Modules
Conclusion and perspectives

The package
Features
Sensor Networks

Formulas
Extentions

Parametric Formulas

formula consume ( i n t value ) =
ba t te ry ’ = b a t t e r y < value ? 0 : b a t t e r y − value ;

Recursive Formulas

formula f a c t ( i n t n ) = n <= 1 ? 1 : n ∗ f a c t ( n − 1 ) ;

A. Demaille et al (LRDE) Modeling of Sensor Networks Using XRM Nov. 17th, 2006 34 / 43

48 / 52



APMC
eXtended Reactive Modules (XRM)

Results on a case study [DSP06 versus DHP06]

Test on a simple model: basic sensor network

DHP06 DSP06

Shell
M4/m4sugar

XRM
XPCTL

264 lines of M4
247 lines of Shell 

script
87 lines of XRM

12 lines of XPCTL

1346 lines of PRISM 
language

25 lines of PCTL

941 lines of PRISM 
language

25 lines of PCTL

Tools

Size of the
description

Size of the 
generated 

PRISM model

49 / 52



APMC
Perspectives: how to feed the beast

Can we do something even more user-friendly?

I APMC works on top of a simulator
I If we can control totally a real system, we don’t need any input

language

I VD-S is a virtualization platform that allows for the total
control of any application running on top of it [HLPQCJ09]

I It can be used as a path generator for the APMC engine

I Adversaries can be defined externally to interact with the
system under verification

50 / 52



APMC
Perspectives: even more exotic architectures

New architectures?

I GPU (unlikely to be efficient)

I FPGA (as accelerator)

I CELL (as accelerator)

I etc.

51 / 52



Conclusion

I Complexity, lower bounds and efficient algorithms for
approximate verification

I Efficient implementation showing good performances on huge
systems

I Several technical improvements, including the consideration of
the machines architecture

A lot of exciting perspectives, with many collaborators!

52 / 52


	General context
	Probabilistic systems
	Can verification be approximated?
	Approximate verification algorithms
	Perspectives

	Non probabilistic systems
	Approximate Probabilistic Model Checker (APMC)
	Architecture
	Distributed and parallel APMC
	APMC input language
	Perspectives

	Conclusion

